def _optimize(self, optimizer, model, input_var, modifier_var, target_var, scale_const_var, input_orig=None):
# apply modifier and clamp resulting image to keep bounded from clip_min to clip_max
if self.clamp_fn == 'tanh':
input_adv = tanh_rescale(modifier_var + input_var, self.clip_min, self.clip_max)
else:
input_adv = torch.clamp(modifier_var + input_var, self.clip_min, self.clip_max)
output = model(input_adv)
# distance to the original input data
if input_orig is None:
dist = l2_dist(input_adv, input_var, keepdim=False)
else:
dist = l2_dist(input_adv, input_orig, keepdim=False)
loss = self._loss(output, target_var, dist, scale_const_var)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_np = loss.data[0]
dist_np = dist.data.cpu().numpy()
output_np = output.data.cpu().numpy()
input_adv_np = input_adv.data.permute(0, 2, 3, 1).cpu().numpy() # back to BHWC for numpy consumption
return loss_np, dist_np, output_np, input_adv_np
attack_carlini_wagner_l2.py 文件源码
python
阅读 36
收藏 0
点赞 0
评论 0
评论列表
文章目录