def postprocess_torch(output):
# Should we?
def denormalize(image):
for t in range(3):
image[t, :, :] = (image[t, :, :] * STD[t]) + MEAN[t]
return image
transformer = transforms.Compose([
transforms.ToPILImage()])
image = output.cpu().data[0]
image = torch.clamp(denormalize(image), min=0, max=1)
return transformer(image)
评论列表
文章目录