def __init__(self, params, defaults):
self.defaults = defaults
if isinstance(params, Variable) or torch.is_tensor(params):
raise TypeError("params argument given to the optimizer should be "
"an iterable of Variables or dicts, but got " +
torch.typename(params))
self.state = defaultdict(dict)
self.param_groups = []
param_groups = list(params)
if len(param_groups) == 0:
raise ValueError("optimizer got an empty parameter list")
if not isinstance(param_groups[0], dict):
param_groups = [{'params': param_groups}]
for param_group in param_groups:
self.add_param_group(param_group)
评论列表
文章目录