def _test_neg(self, cast):
float_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor']
int_types = ['torch.IntTensor', 'torch.ShortTensor', 'torch.ByteTensor',
'torch.CharTensor']
for t in float_types + int_types:
if t in float_types:
a = cast(torch.randn(100, 90).type(t))
else:
a = cast(torch.Tensor(100, 90).type(t).random_())
zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_()
res_add = torch.add(zeros, -1, a)
res_neg = a.clone()
res_neg.neg_()
self.assertEqual(res_neg, res_add)
# test out of place as well
res_neg_out_place = a.clone().neg()
self.assertEqual(res_neg_out_place, res_add)
# test via __neg__ operator
res_neg_op = -a.clone()
self.assertEqual(res_neg_op, res_add)
评论列表
文章目录