gridgen.py 文件源码

python
阅读 39 收藏 0 点赞 0 评论 0

项目:lr-gan.pytorch 作者: jwyang 项目源码 文件源码
def forward(self, input1, input2):
        self.batchgrid3d = torch.zeros(torch.Size([input1.size(0)]) + self.grid3d.size())

        for i in range(input1.size(0)):
            self.batchgrid3d[i] = self.grid3d

        self.batchgrid3d = Variable(self.batchgrid3d)

        self.batchgrid = torch.zeros(torch.Size([input1.size(0)]) + self.grid.size())

        for i in range(input1.size(0)):
            self.batchgrid[i] = self.grid

        self.batchgrid = Variable(self.batchgrid)

        #print(self.batchgrid3d)

        x = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,0:4]), 3)
        y = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,4:8]), 3)
        z = torch.sum(torch.mul(self.batchgrid3d, input1[:,:,:,8:]), 3)
        #print(x)
        r = torch.sqrt(x**2 + y**2 + z**2) + 1e-5

        #print(r)
        theta = torch.acos(z/r)/(np.pi/2)  - 1
        #phi = torch.atan(y/x)
        phi = torch.atan(y/(x + 1e-5))  + np.pi * x.lt(0).type(torch.FloatTensor) * (y.ge(0).type(torch.FloatTensor) - y.lt(0).type(torch.FloatTensor))
        phi = phi/np.pi

        input_u = input2.view(-1,1,1,1).repeat(1,self.height, self.width,1)

        output = torch.cat([theta,phi], 3)

        output1 = torch.atan(torch.tan(np.pi/2.0*(output[:,:,:,1:2] + self.batchgrid[:,:,:,2:] * input_u[:,:,:,:])))  /(np.pi/2)
        output2 = torch.cat([output[:,:,:,0:1], output1], 3)

        return output2
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号