def forward(self, x):
n = x.size(2) * x.size(3)
t = x.view(x.size(0), x.size(1), n)
mean = torch.mean(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x)
# Calculate the biased var. torch.var returns unbiased var
var = torch.var(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) * ((n - 1) / float(n))
scale_broadcast = self.scale.unsqueeze(1).unsqueeze(1).unsqueeze(0)
scale_broadcast = scale_broadcast.expand_as(x)
shift_broadcast = self.shift.unsqueeze(1).unsqueeze(1).unsqueeze(0)
shift_broadcast = shift_broadcast.expand_as(x)
out = (x - mean) / torch.sqrt(var + self.eps)
out = out * scale_broadcast + shift_broadcast
return out
评论列表
文章目录