attention.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:pytorch-seq2seq 作者: IBM 项目源码 文件源码
def forward(self, output, context):
        batch_size = output.size(0)
        hidden_size = output.size(2)
        input_size = context.size(1)
        # (batch, out_len, dim) * (batch, in_len, dim) -> (batch, out_len, in_len)
        attn = torch.bmm(output, context.transpose(1, 2))
        if self.mask is not None:
            attn.data.masked_fill_(self.mask, -float('inf'))
        attn = F.softmax(attn.view(-1, input_size)).view(batch_size, -1, input_size)

        # (batch, out_len, in_len) * (batch, in_len, dim) -> (batch, out_len, dim)
        mix = torch.bmm(attn, context)

        # concat -> (batch, out_len, 2*dim)
        combined = torch.cat((mix, output), dim=2)
        # output -> (batch, out_len, dim)
        output = F.tanh(self.linear_out(combined.view(-1, 2 * hidden_size))).view(batch_size, -1, hidden_size)

        return output, attn
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号