def setUp(self):
# normal-normal; known covariance
self.lam0 = Variable(torch.Tensor([0.1, 0.1])) # precision of prior
self.mu0 = Variable(torch.Tensor([0.0, 0.5])) # prior mean
# known precision of observation noise
self.lam = Variable(torch.Tensor([6.0, 4.0]))
self.data = []
self.data.append(Variable(torch.Tensor([-0.1, 0.3])))
self.data.append(Variable(torch.Tensor([0.00, 0.4])))
self.data.append(Variable(torch.Tensor([0.20, 0.5])))
self.data.append(Variable(torch.Tensor([0.10, 0.7])))
self.n_data = Variable(torch.Tensor([len(self.data)]))
self.sum_data = self.data[0] + \
self.data[1] + self.data[2] + self.data[3]
self.analytic_lam_n = self.lam0 + \
self.n_data.expand_as(self.lam) * self.lam
self.analytic_log_sig_n = -0.5 * torch.log(self.analytic_lam_n)
self.analytic_mu_n = self.sum_data * (self.lam / self.analytic_lam_n) +\
self.mu0 * (self.lam0 / self.analytic_lam_n)
self.verbose = True
评论列表
文章目录