train.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:examples 作者: pytorch 项目源码 文件源码
def forward(self, input, future = 0):
        outputs = []
        h_t = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
        c_t = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
        h_t2 = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
        c_t2 = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)

        for i, input_t in enumerate(input.chunk(input.size(1), dim=1)):
            h_t, c_t = self.lstm1(input_t, (h_t, c_t))
            h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
            output = self.linear(h_t2)
            outputs += [output]
        for i in range(future):# if we should predict the future
            h_t, c_t = self.lstm1(output, (h_t, c_t))
            h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
            output = self.linear(h_t2)
            outputs += [output]
        outputs = torch.stack(outputs, 1).squeeze(2)
        return outputs
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号