def forward(self, input, future = 0):
outputs = []
h_t = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
c_t = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
h_t2 = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
c_t2 = Variable(torch.zeros(input.size(0), 51).double(), requires_grad=False)
for i, input_t in enumerate(input.chunk(input.size(1), dim=1)):
h_t, c_t = self.lstm1(input_t, (h_t, c_t))
h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
output = self.linear(h_t2)
outputs += [output]
for i in range(future):# if we should predict the future
h_t, c_t = self.lstm1(output, (h_t, c_t))
h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
output = self.linear(h_t2)
outputs += [output]
outputs = torch.stack(outputs, 1).squeeze(2)
return outputs
评论列表
文章目录