yellowfin.py 文件源码

python
阅读 39 收藏 0 点赞 0 评论 0

项目:YellowFin_Pytorch 作者: JianGoForIt 项目源码 文件源码
def grad_variance(self):
    global_state = self._global_state
    beta = self._beta
    self._grad_var = np.array(0.0, dtype=np.float32)
    for group_id, group in enumerate(self._optimizer.param_groups):
      for p_id, p in enumerate(group['params'] ):
        if p.grad is None:
          continue
        grad = p.grad.data
        state = self._optimizer.state[p]
        if self._iter == 0:
          state["grad_avg"] = grad.new().resize_as_(grad).zero_()
          state["grad_avg_squared"] = 0.0
        state["grad_avg"].mul_(beta).add_(1 - beta, grad)
        self._grad_var += torch.sum(state["grad_avg"] * state["grad_avg"] )

    if self._zero_debias:
      debias_factor = self.zero_debias_factor()
    else:
      debias_factor = 1.0

    self._grad_var /= -(debias_factor**2)
    self._grad_var += global_state['grad_norm_squared_avg'] / debias_factor
    # in case of negative variance: the two term are using different debias factors
    self._grad_var = max(self._grad_var, eps)
    if self._sparsity_debias:
      self._grad_var *= self._sparsity_avg
    return
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号