def __init__(self, dataset_fname=None, train=False, size=50, num_samples=1000000, random_seed=1111):
super(TSPDataset, self).__init__()
#start = torch.FloatTensor([[-1], [-1]])
torch.manual_seed(random_seed)
self.data_set = []
if not train:
with open(dataset_fname, 'r') as dset:
for l in tqdm(dset):
inputs, outputs = l.split(' output ')
sample = torch.zeros(1, )
x = np.array(inputs.split(), dtype=np.float32).reshape([-1, 2]).T
#y.append(np.array(outputs.split(), dtype=np.int32)[:-1]) # skip the last one
self.data_set.append(x)
else:
# randomly sample points uniformly from [0, 1]
for l in tqdm(range(num_samples)):
x = torch.FloatTensor(2, size).uniform_(0, 1)
#x = torch.cat([start, x], 1)
self.data_set.append(x)
self.size = len(self.data_set)
tsp_task.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录