def read(self, inpt, lang_h, ctx_h, prefix_token="THEM:"):
"""Reads a given utterance."""
# inpt contains the pronounced utterance
# add a "THEM:" token to the start of the message
prefix = Variable(torch.LongTensor(1))
prefix.data.fill_(self.word_dict.get_idx(prefix_token))
inpt = torch.cat([self.to_device(prefix), inpt])
# embed words
inpt_emb = self.word_encoder(inpt)
# append the context embedding to every input word embedding
ctx_h_rep = ctx_h.expand(inpt_emb.size(0), ctx_h.size(1), ctx_h.size(2))
inpt_emb = torch.cat([inpt_emb, ctx_h_rep], 2)
# finally read in the words
out, lang_h = self.reader(inpt_emb, lang_h)
return out, lang_h
dialog_model.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录