def initialize(is_gpu, dir_data, di_set_transform, ext_img, n_img_per_batch, n_worker):
trainloader, testloader, li_class = make_dataloader_custom_file(
dir_data, di_set_transform, ext_img, n_img_per_batch, n_worker)
#net = Net().cuda()
net = Net_gap()
#t1 = net.cuda()
criterion = nn.CrossEntropyLoss()
if is_gpu:
net.cuda()
criterion.cuda()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
scheduler = ReduceLROnPlateau(optimizer, 'min', verbose=1, patience = 8, epsilon=0.00001, min_lr=0.000001) # set up scheduler
return trainloader, testloader, net, criterion, optimizer, scheduler, li_class
cifar10_custom_dataset_gap.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录