def run_rmse_net(model, variables, X_train, Y_train):
opt = optim.Adam(model.parameters(), lr=1e-3)
for i in range(1000):
opt.zero_grad()
model.train()
train_loss = nn.MSELoss()(
model(variables['X_train_'])[0], variables['Y_train_'])
train_loss.backward()
opt.step()
model.eval()
test_loss = nn.MSELoss()(
model(variables['X_test_'])[0], variables['Y_test_'])
print(i, train_loss.data[0], test_loss.data[0])
model.eval()
model.set_sig(variables['X_train_'], variables['Y_train_'])
return model
# TODO: minibatching
评论列表
文章目录