def forward(self, input):
input_torch = torch.from_numpy(input)
if self.use_gpu:
input_torch = input_torch.cuda()
else:
input_torch = input_torch.float()
input_var = Variable(input_torch)
# forward
out = self.model.forward(input_var)
if type(out) is list:
clean_out = []
for v in out:
clean_out.append(v.data.cpu().numpy())
out = clean_out
else:
out = out.data.cpu().numpy()
self.ready = True
return out
评论列表
文章目录