def __init__(self, config):
super(Classifier, self).__init__()
if config['pooling'] == 'mean' or config['pooling'] == 'max':
self.encoder = BiLSTM(config)
self.fc = nn.Linear(config['nhid'] * 2, config['nfc'])
elif config['pooling'] == 'all':
self.encoder = SelfAttentiveEncoder(config)
self.fc = nn.Linear(config['nhid'] * 2 * config['attention-hops'], config['nfc'])
else:
raise Exception('Error when initializing Classifier')
self.drop = nn.Dropout(config['dropout'])
self.tanh = nn.Tanh()
self.pred = nn.Linear(config['nfc'], config['class-number'])
self.dictionary = config['dictionary']
# self.init_weights()
models.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录