def __init__(self, mode, anchors=9, classes=80, depth=4,
base_activation=F.relu,
output_activation=F.sigmoid):
super(SubNet, self).__init__()
self.anchors = anchors
self.classes = classes
self.depth = depth
self.base_activation = base_activation
self.output_activation = output_activation
self.subnet_base = nn.ModuleList([conv3x3(256, 256, padding=1)
for _ in range(depth)])
if mode == 'boxes':
self.subnet_output = conv3x3(256, 4 * self.anchors, padding=1)
elif mode == 'classes':
# add an extra dim for confidence
self.subnet_output = conv3x3(256, (1 + self.classes) * self.anchors, padding=1)
self._output_layer_init(self.subnet_output.bias.data)
评论列表
文章目录