def batch_predictions(self, images):
# lazy import
import torch
from torch.autograd import Variable
images = self._process_input(images)
n = len(images)
images = torch.from_numpy(images)
if self.cuda: # pragma: no cover
images = images.cuda()
images = Variable(images, volatile=True)
predictions = self._model(images)
predictions = predictions.data
if self.cuda: # pragma: no cover
predictions = predictions.cpu()
predictions = predictions.numpy()
assert predictions.ndim == 2
assert predictions.shape == (n, self.num_classes())
return predictions
评论列表
文章目录