def mlpg(means, variances, windows):
"""Maximum Liklihood Paramter Generation (MLPG).
The parameters are almost same as :func:`nnmnkwii.paramgen.mlpg` expects.
The differences are:
- The function assumes ``means`` as :obj:`torch.autograd.Variable`
instead of :obj:`numpy.ndarray`.
- The fucntion assumes ``variances_frames`` as :obj:`torch.FloatTensor`?
instead of :obj:`numpy.ndarray`.
Args:
means (torch.autograd.Variable): Means
variances (torch.FloatTensor): Variances
windows (list): A sequence of window specification
See also:
:obj:`nnmnkwii.autograd.MLPG`, :func:`nnmnkwii.paramgen.mlpg`
"""
T, D = means.size()
if variances.dim() == 1 and variances.shape[0] == D:
variances = variances.expand(T, D)
assert means.size() == variances.size()
return MLPG(variances, windows)(means)
评论列表
文章目录