def run():
if len(sys.argv) < 4:
print("** Usage: python3 " + sys.argv[0] + " <<Model Directory>> <<Everything Set>> <<Test Set>>")
sys.exit(1)
np.random.seed(42)
model_dir = sys.argv[1]
config = Config.load(['./default.conf', os.path.join(model_dir, 'model.conf')])
model = create_model(config)
everything_labels, everything_label_lengths = load_programs(config, sys.argv[2])
test_labels, test_label_lengths = load_programs(config, sys.argv[3])
#test_labels, test_label_lengths = sample(config.grammar, test_labels, test_label_lengths)
print("unknown", unknown_tokens)
with tf.Graph().as_default():
tf.set_random_seed(1234)
model.build()
loader = tf.train.Saver()
train_bag_of_tokens = bag_of_tokens(config, everything_labels, everything_label_lengths)
V, mean = pca_fit(train_bag_of_tokens, n_components=2)
eval_bag_of_tokens = bag_of_tokens(config, test_labels, test_label_lengths)
transformed = pca_transform(eval_bag_of_tokens, V, mean)
with tf.Session() as sess:
loader.restore(sess, os.path.join(model_dir, 'best'))
transformed = transformed.eval(session=sess)
programs = reconstruct_programs(test_labels, test_label_lengths, config.grammar.tokens)
show_pca(transformed, programs)
eval_output_embeddings.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录