def rank(self):
'''
Rank candidates according to trained model.
'''
for c in self.filtered_candidates:
c.set_prob_features()
# Only calculate prob if not in training mode
if self.model.__class__.__name__ != 'Model':
example = []
for j in range(len(self.model.features)):
feature = getattr(c, self.model.features[j])
example.append(float(feature))
c.prob = self.model.predict(example)
self.ranked_candidates = sorted(self.filtered_candidates,
key=attrgetter('prob'), reverse=True)
评论列表
文章目录