def normal(random_state, size=None, avg=0.0, std=1.0, ndim=None, dtype=None):
"""
Sample from a normal distribution centered on avg with
the specified standard deviation (std).
If the size argument is ambiguous on the number of dimensions, ndim
may be a plain integer to supplement the missing information.
If size is None, the output shape will be determined by the shapes
of avg and std.
If dtype is not specified, it will be inferred from the dtype of
avg and std, but will be at least as precise as floatX.
"""
avg = tensor.as_tensor_variable(avg)
std = tensor.as_tensor_variable(std)
if dtype is None:
dtype = tensor.scal.upcast(theano.config.floatX, avg.dtype, std.dtype)
ndim, size, bcast = _infer_ndim_bcast(ndim, size, avg, std)
op = RandomFunction('normal',
tensor.TensorType(dtype=dtype, broadcastable=bcast))
return op(random_state, size, avg, std)
评论列表
文章目录