raw_random.py 文件源码

python
阅读 50 收藏 0 点赞 0 评论 0

项目:Theano-Deep-learning 作者: GeekLiB 项目源码 文件源码
def normal(random_state, size=None, avg=0.0, std=1.0, ndim=None, dtype=None):
    """
    Sample from a normal distribution centered on avg with
    the specified standard deviation (std).

    If the size argument is ambiguous on the number of dimensions, ndim
    may be a plain integer to supplement the missing information.

    If size is None, the output shape will be determined by the shapes
    of avg and std.

    If dtype is not specified, it will be inferred from the dtype of
    avg and std, but will be at least as precise as floatX.

    """
    avg = tensor.as_tensor_variable(avg)
    std = tensor.as_tensor_variable(std)
    if dtype is None:
        dtype = tensor.scal.upcast(theano.config.floatX, avg.dtype, std.dtype)
    ndim, size, bcast = _infer_ndim_bcast(ndim, size, avg, std)
    op = RandomFunction('normal',
                        tensor.TensorType(dtype=dtype, broadcastable=bcast))
    return op(random_state, size, avg, std)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号