def invert(self, constraints, z_i):
[_invert, z_updates, z, beta_r, z_const] = self.opt_model
constraints_t = self.preprocess_constraints(constraints)
[im_c_t, mask_c_t, im_e_t, mask_e_t] = constraints_t # [im_c_t, mask_c_t, im_e_t, mask_e_t]
results = _invert(im_c_t, mask_c_t, im_e_t, mask_e_t, z_i.astype(np.float32))
[gx, cost, cost_all, rec_all, real_all, init_all, sum_e, sum_x_edge] = results
gx_t = (255 * self.inverse_transform(gx, npx=self.npx, nc=self.nc)).astype(np.uint8)
if self.nc == 1:
gx_t = np.tile(gx_t, (1, 1, 1, 3))
z_t = np.tanh(z.get_value()).copy()
return gx_t, z_t, cost_all
评论列表
文章目录