def get_padded_shuffled_mask(self, train, X, pad=0):
mask = self.get_input_mask(train)
if mask is None:
mask = T.ones_like(X.sum(axis=-1)) # is there a better way to do this without a sum?
# mask is (nb_samples, time)
mask = T.shape_padright(mask) # (nb_samples, time, 1)
mask = T.addbroadcast(mask, -1) # (time, nb_samples, 1) matrix.
mask = mask.dimshuffle(1, 0, 2) # (time, nb_samples, 1)
if pad > 0:
# left-pad in time with 0
padding = alloc_zeros_matrix(pad, mask.shape[1], 1)
mask = T.concatenate([padding, mask], axis=0)
return mask.astype('int8')
评论列表
文章目录