ThreeD_AE.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:3D_Conditional_Gan 作者: yilei0620 项目源码 文件源码
def encoder(X, w1, g1, b1, w2, g2, b2, w3, g3, b3, w4, g4, b4, wz):
    filter_shape = (Channel[1] , Channel[0], kernal[0], kernal[0], kernal[0])
    Dl1 = lrelu(batchnorm(conv(X,w1,filter_shape = filter_shape),g = g1, b = b1))

    filter_shape = (Channel[2] , Channel[1], kernal[1], kernal[1], kernal[1])
    Dl2 = lrelu(batchnorm(conv(Dl1, w2,filter_shape = filter_shape), g = g2, b= b2))

    filter_shape = (Channel[3] , Channel[2], kernal[2], kernal[2], kernal[2])
    Dl3 = lrelu(batchnorm(conv(Dl2,w3,filter_shape = filter_shape), g = g3, b= b3))

    filter_shape = (Channel[4] , Channel[3], kernal[3], kernal[3], kernal[3])
    Dl4 = lrelu(batchnorm(conv(Dl3,w4,filter_shape = filter_shape), g = g4, b = b4))
    Dl4 = T.flatten(Dl4,2)
    DlZ = sigmoid(T.dot(Dl4,wz))
    return DlZ


# def gen_Z(dist):
#   mu = dist[:Nz]
#   sigma = dist[Nz:]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号