def errors(self, y):
"""
returns a float representing the number of errors in the minibatch
over the total number of examples of the minibatch. Zero one loss
over the size of the minibatch.
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label.
"""
if y.ndim != self.y_decision.ndim:
raise TypeError("y should have the same shape as self.y_decision",
('y', y.type, "y_decision", self.y_decision.type))
if y.dtype.startswith('int') or y.dtype.startswith('uint'):
# The T.neq operator returns a vector of 0s and 1s, where:
# 1 represents a mistake in classification
return T.mean(T.neq(self.y_decision, y))
else:
raise NotImplementedError()
layer.py 文件源码
python
阅读 40
收藏 0
点赞 0
评论 0
评论列表
文章目录