def main():
options = parse_options()
print(options)
window = T.iscalar('theta')
inputs1 = T.tensor3('inputs1', dtype='float32')
mask = T.matrix('mask', dtype='uint8')
shape = [int(i) for i in options['shape'].split(',')]
nonlinearities = [select_nonlinearity(s) for s in options['nonlinearities'].split(',')]
network = deltanet_majority_vote.load_saved_model(options['input'],
(shape, nonlinearities),
(None, None, options['input_dim']), inputs1, (None, None), mask,
options['lstm_size'], window, options['output_classes'],
use_blstm=options['use_blstm'])
d = deltanet_majority_vote.extract_encoder_weights(network, ['fc1', 'fc2', 'fc3', 'bottleneck'],
[('w1', 'b1'), ('w2', 'b2'), ('w3', 'b3'), ('w4', 'b4')])
expected_keys = ['w1', 'w2', 'w3', 'w4', 'b1', 'b2', 'b3', 'b4']
keys = d.keys()
for k in keys:
assert k in expected_keys
assert type(d[k]) == np.ndarray
if 'output' in options:
print('save extracted weights to {}'.format(options['output']))
save_mat(d, options['output'])
评论列表
文章目录