def test_load_params(self):
window = T.iscalar('theta')
inputs1 = T.tensor3('inputs1', dtype='float32')
mask = T.matrix('mask', dtype='uint8')
network = deltanet_majority_vote.load_saved_model('../oulu/results/best_models/1stream_mfcc_w3s3.6.pkl',
([500, 200, 100, 50], [rectify, rectify, rectify, linear]),
(None, None, 91), inputs1, (None, None), mask,
250, window, 10)
d = deltanet_majority_vote.extract_encoder_weights(network, ['fc1', 'fc2', 'fc3', 'bottleneck'],
[('w1', 'b1'), ('w2', 'b2'), ('w3', 'b3'), ('w4', 'b4')])
b = deltanet_majority_vote.extract_lstm_weights(network, ['f_blstm1', 'b_blstm1'],
['flstm', 'blstm'])
expected_keys = ['w1', 'w2', 'w3', 'w4', 'b1', 'b2', 'b3', 'b4']
keys = d.keys()
for k in keys:
assert k in expected_keys
assert type(d[k]) == np.ndarray
save_mat(d, '../oulu/models/oulu_1stream_mfcc_w3s3.mat')
评论列表
文章目录