def __init__(self, input_dim, output_dim, depth=3,
init='glorot_uniform', inner_init='orthogonal',
activation='sigmoid', inner_activation='hard_sigmoid',
weights=None, truncate_gradient=-1, return_sequences=False):
super(SimpleDeepRNN,self).__init__()
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.input_dim = input_dim
self.output_dim = output_dim
self.truncate_gradient = truncate_gradient
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.depth = depth
self.return_sequences = return_sequences
self.input = T.tensor3()
self.W = self.init((self.input_dim, self.output_dim))
self.Us = [self.inner_init((self.output_dim, self.output_dim)) for _ in range(self.depth)]
self.b = shared_zeros((self.output_dim))
self.params = [self.W] + self.Us + [self.b]
if weights is not None:
self.set_weights(weights)
评论列表
文章目录