def __init__(self, input_dim, output_dim,
init='glorot_uniform', inner_init='orthogonal', activation='sigmoid', weights=None,
truncate_gradient=-1, return_sequences=False):
super(SimpleRNN,self).__init__()
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.input_dim = input_dim
self.output_dim = output_dim
self.truncate_gradient = truncate_gradient
self.activation = activations.get(activation)
self.return_sequences = return_sequences
self.input = T.tensor3()
self.W = self.init((self.input_dim, self.output_dim))
self.U = self.inner_init((self.output_dim, self.output_dim))
self.b = shared_zeros((self.output_dim))
self.params = [self.W, self.U, self.b]
if weights is not None:
self.set_weights(weights)
评论列表
文章目录