custom_layers.py 文件源码

python
阅读 26 收藏 0 点赞 0 评论 0

项目:MachineComprehension 作者: sa-j 项目源码 文件源码
def categorical_accuracy(probs, y, mask, length_var):
    probs_shp = probs.shape
    # (n_samples, n_timesteps_f)
    predicted = T.argmax(probs, axis=-1)
    # (n_samples * n_timesteps_f, n_labels)
    probs = probs.reshape([probs_shp[0]*probs_shp[1], probs_shp[2]])
    # (n_samples * n_timesteps_f)
    y_flat = y.flatten()
    acc = lasagne.objectives.categorical_accuracy(probs, y_flat)
    # (n_samples, n_timesteps_f)
    acc = acc.reshape((probs_shp[0], probs_shp[1]))
    acc = acc * mask
    acc = T.sum(acc, axis=1) / length_var
    return acc, predicted
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号