def perform(self, node, inputs, output_storage):
"""
Calculate ROC AUC score.
Parameters
----------
node : Apply instance
Symbolic inputs and outputs.
inputs : list
Sequence of inputs.
output_storage : list
List of mutable 1-element lists.
"""
if roc_auc_score is None:
raise RuntimeError("Could not import from sklearn.")
y_true, y_score = inputs
print(y_true.shape)
y_true = np.argmax(y_true, axis=1)
y_score = np.argmax(y_score, axis=1)
#print(type(y_true), y_true.shape, type(y_score), y_score.shape)
try:
TP = np.sum(y_true[y_score==1]==1)*1. #/ sum(y_true)
FP = np.sum(y_true[y_score==1]==0)*1. #/ (y_true.shape[0]-sum(y_true))
prec = TP / (TP+FP+1e-6)
except ValueError:
prec = np.nan
#rvalue = np.array((roc_auc, prec, reca, f1))
#[0][0]
output_storage[0][0] = theano._asarray(prec, dtype=config.floatX)
roc_auc.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录