def connect(self, inputs):
energy = tensor.dot(inputs, self.W) + self.b
energy = energy.reshape([energy.shape[0] * energy.shape[1], energy.shape[2]])
log_scores = tensor.log(tensor.nnet.softmax(energy))
predictions = tensor.argmax(log_scores, axis=-1)
return (log_scores, predictions)
评论列表
文章目录