def output_func(self, input):
# P(Y|X) = softmax(W.X + b)
features = input[0]
session_info = input[1]
exam = 1 / (1 + T.exp(-T.dot(features, self.W[0]) - self.b[0]))
rel = 1 / (1 + T.exp(-T.dot(features, self.W[1]) - self.b[1]))
p_1 = exam * rel
#p_1 = 1 / (1 + T.exp(-T.dot(features, self.W) - self.b))
self.y_pred = p_1 > 0.5
self.p_y_given_x = T.horizontal_stack(1 - p_1, p_1)
#self.p_y_given_x = T.nnet.softmax(self._dot(input, self.W) + self.b)
#self.y_pred = T.argmax(self.p_y_given_x, axis=1)
#comput add loss
#q_info = session_info[:,0]
#u_info = session_info[:,1:]
r_info = session_info[:,1 + self.dim:]
self.rel_model_loss = T.pow(rel - r_info, 2)
#prev_rel = 1 / (1 + T.exp(-T.dot(features, self.R_W) - self.R_b))
#self.rel_const_loss = T.pow(rel - prev_rel, 2)
return self.y_pred
评论列表
文章目录