def __init__(self, input, n_in, n_out):
# initialize with 0 the weights W as a matrix of shape (n_in, n_out)
self.W = theano.shared(value=numpy.zeros((n_in, n_out),
dtype=theano.config.floatX),
name='W', borrow=True)
# initialize the baises b as a vector of n_out 0s
self.b = theano.shared(value=numpy.zeros((n_out,),
dtype=theano.config.floatX),
name='b', borrow=True)
# compute vector of class-membership probabilities in symbolic form
self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
self.p_y_given_x_printed = theano.printing.Print('p_y_given_x = ')(self.p_y_given_x)
#self.p_y_given_x_printed = self.p_y_given_x
# compute prediction as class whose probability is maximal in
# symbolic form
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
# parameters of the model
self.params = [self.W, self.b]
评论列表
文章目录