def randomize_parameters(params, sigmas, sig_min_perturbations):
r_params = []
r_epsilons = []
for i in range(len(params)):
epsilon_half = theano_rng.normal((n_perturbations/2,params[i].shape[1],params[i].shape[2]), dtype = theano.config.floatX)
r_epsilon = T.concatenate( [epsilon_half, -1.0*epsilon_half], axis = 0 )
r_param = params[i] + r_epsilon*(T.nnet.softplus( sigmas[i] ) + sig_min_perturbations)
r_params.append(r_param)
r_epsilons.append(r_epsilon)
return r_params, r_epsilons
####################################################################
#
# Create randomly perturbed version of parameters
#
####################################################################
评论列表
文章目录