def gen_samples(n, nbatch=128):
samples = []
labels = []
n_gen = 0
for i in range(n/nbatch):
ymb = floatX(OneHot(np_rng.randint(0, 10, nbatch), ny))
zmb = floatX(np_rng.uniform(-1., 1., size=(nbatch, nz)))
xmb = _gen(zmb, ymb)
samples.append(xmb)
labels.append(np.argmax(ymb, axis=1))
n_gen += len(xmb)
n_left = n-n_gen
ymb = floatX(OneHot(np_rng.randint(0, 10, n_left), ny))
zmb = floatX(np_rng.uniform(-1., 1., size=(n_left, nz)))
xmb = _gen(zmb, ymb)
samples.append(xmb)
labels.append(np.argmax(ymb, axis=1))
return np.concatenate(samples, axis=0), np.concatenate(labels, axis=0)
2-train_dcgan.py 文件源码
python
阅读 38
收藏 0
点赞 0
评论 0
评论列表
文章目录