def set_net_params(self):
'''Returns MLP parameters for scan.'''
super(GRU, self).set_net_params()
if self.input_net_aux is None:
self.input_net_aux = MLP(
self.dim_in, 2 * self.dim_h, 2 * self.dim_hs[0], 1,
rng=self.rng, trng=self.trng,
h_act='T.nnet.sigmoid', out_act='T.tanh',
name='input_net_aux')
else:
assert self.input_net_aux.dim_in == self.dim_in
assert self.input_net_aux.dim_out == 2 * self.dim_hs[0]
self.input_net_aux.name = self.name + '_input_net_aux'
self.nets.append(self.input_net_aux)
for i in xrange(self.n_layers - 1):
n = MLP(self.dim_hs[i], 2 * self.dim_hs[i+1],
rng=self.rng, trng=self.trng,
distribution='centered_binomial',
name='rnn_net_aux%d' % i)
self.inter_nets.append(n) #insert(2 * i + 1, n)
评论列表
文章目录