def l2normalize(layer, train_scale=True):
W_param = layer.W
s = W_param.get_value().shape
if len(s)==4:
axes_to_sum = (1,2,3)
dimshuffle_args = [0,'x','x','x']
k = s[0]
else:
axes_to_sum = 0
dimshuffle_args = ['x',0]
k = s[1]
layer.W_scale = layer.add_param(lasagne.init.Constant(1.),
(k,), name="W_scale", trainable=train_scale, regularizable=False)
layer.W = W_param * (layer.W_scale/T.sqrt(1e-6 + T.sum(T.square(W_param),axis=axes_to_sum))).dimshuffle(*dimshuffle_args)
return layer
# fully connected layer with weight normalization
评论列表
文章目录