def learn_best_param(self):
C_range = np.logspace(-2, 10, 13)
param_grid = dict(C=C_range)
cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(self.training_data, self.training_target)
self.clf.set_params(C=grid.best_params_['C'])
print("The best parameters are %s with a score of %0.2f"
% (grid.best_params_, grid.best_score_))
SVM_Trainer.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录