def get_split(self):
if self.split is not None:
return
name = "{}/split.p".format(self.flags.data_path)
split = load_pickle(None,name,[])
if len(split) == 0:
#data = self.data["training_variants"].append(self.data["test_variants_filter"])
data = self.data["training_variants"]
y = data['Class']-1
X = np.arange(y.shape[0])
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=self.flags.folds,shuffle=True,random_state=99)
split = [(train_index, test_index) for train_index, test_index in skf.split(X, y)]
save_pickle(split,name)
print("new shuffle")
self.split = split
#print("split va",split[0][1][:10])
评论列表
文章目录