def knn(data, predict=False):
n_neighbors = 3
clf = KNeighborsClassifier(n_neighbors=n_neighbors)
for i in range(5):
scores = cross_val_score(clf, data.X_train, data.y_train, cv=10)
print("svm mean:", scores.mean())
scores = list(scores)
print("svm train scores:\n", scores)
# prediction
best_n = n_neighbors
clf = KNeighborsClassifier(n_neighbors=best_n)
return clf
评论列表
文章目录