def train_logistic():
df = pd.read_csv(config.activations_path)
df, y, classes = encode(df)
X_train, X_test, y_train, y_test = train_test_split(df.values, y, test_size=0.2, random_state=17)
params = {'C': [10, 2, .9, .4, .1], 'tol': [0.0001, 0.001, 0.0005]}
log_reg = LogisticRegression(solver='lbfgs', multi_class='multinomial', class_weight='balanced')
clf = GridSearchCV(log_reg, params, scoring='neg_log_loss', refit=True, cv=3, n_jobs=-1)
clf.fit(X_train, y_train)
print("best params: " + str(clf.best_params_))
print("Accuracy: ", accuracy_score(y_test, clf.predict(X_test)))
setattr(clf, '__classes', classes)
# save results for further using
joblib.dump(clf, config.get_novelty_detection_model_path())
train_novelty_detection.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录