def gs_Ridge_BIKE(A_list, yV, XX=None, alphas_log=(1, -1, 9), n_folds=5, n_jobs=-1):
"""
As is a list of A matrices where A is similarity matrix.
X is a concatened linear descriptors.
If no X is used, X can be empty
"""
clf = binary_model.BIKE_Ridge(A_list, XX)
parmas = {'alpha': np.logspace(*alphas_log)}
ln = A_list[0].shape[0] # ls is the number of molecules.
kf_n_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
kf_n = kf_n_c.split(A_list)
gs = model_selection.GridSearchCV(
clf, parmas, scoring='r2', cv=kf_n, n_jobs=n_jobs)
AX_idx = np.array([list(range(ln))]).T
gs.fit(AX_idx, yV)
return gs
评论列表
文章目录