feature_engineering.py 文件源码

python
阅读 35 收藏 0 点赞 0 评论 0

项目:LSAT 作者: BillVanderLugt 项目源码 文件源码
def grid(X, y):
    '''
    Adapted from: http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_text_feature_extraction.html#sphx-glr-auto-examples-model-selection-grid-search-text-feature-extraction-py
    Perform a grid search.
    '''

    grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, cv=8)

    print("Performing grid search...")
    print("pipeline:", [name for name, _ in pipeline.steps])
    print("parameters:")
    pprint(parameters)
    t0 = time()
    grid_search.fit(X, y)
    print("done in %0.3fs" % (time() - t0))
    print()

    print("Best score: %0.3f" % grid_search.best_score_)
    print("Best parameters set:")
    best_parameters = grid_search.best_estimator_.get_params()
    for param_name in sorted(parameters.keys()):
        print("\t%s: %r" % (param_name, best_parameters[param_name]))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号