def test_krige_pipeline(get_krige_method, get_variogram_model):
pipe = Pipeline(steps=[('krige', Krige(method=get_krige_method))])
param_dict = {'krige__variogram_model': [get_variogram_model]}
estimator = GridSearchCV(pipe,
param_dict,
n_jobs=1,
iid=False,
pre_dispatch=2,
verbose=True
)
np.random.seed(1)
X = np.random.randint(0, 400, size=(20, 2)).astype(float)
y = 5*np.random.rand(20)
estimator.fit(X=X, y=y)
assert estimator.cv_results_['mean_train_score'][0] > -1.0
test_optimisation.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录