def test_pipeline(get_models, get_transform, get_kernel):
alg, model = get_models
trans = get_transform()
kernel = get_kernel() + WhiteKernel()
pipe = Pipeline(steps=[(alg, model())])
param_dict = {}
if hasattr(model(), 'n_estimators'):
param_dict[alg + '__n_estimators'] = [5]
if hasattr(model(), 'kernel'):
param_dict[alg + '__kernel'] = [kernel]
param_dict[alg + '__target_transform'] = [trans]
estimator = GridSearchCV(pipe,
param_dict,
n_jobs=1,
iid=False,
pre_dispatch=2,
verbose=True,
)
np.random.seed(10)
estimator.fit(X=1 + np.random.rand(10, 3), y=1. + np.random.rand(10))
assert estimator.cv_results_['mean_train_score'][0] > -15.0
test_optimisation.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录