def fit(self, X, y=None, groups=None):
"""Run fit with all sets of parameters.
Parameters
----------
X : array-like, shape=(n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape=(n_samples,) or (n_samples, n_output), optional (default=None)
Target relative to X for classification or regression;
None for unsupervised learning.
groups : array-like, shape=(n_samples,), optional (default=None)
Group labels for the samples used while splitting the dataset into
train/test set.
"""
return super(GridSearchCV, self).fit(X, _as_numpy(y), groups)
评论列表
文章目录