def test_using_kfold(X, y, clf, splits=5):
kf = KFold(n_splits=splits, shuffle=True)
scores = []
for k, (train, test) in enumerate(kf.split(X, y)):
logger.info("Fitting and transforming the model on one fold")
clf.fit(X[train], y[train])
score = clf.score(X[test], y[test])
logger.info("[Fold {0}] score: {1:.5f}".format(k+1, score))
scores.append(score)
utils.persistence.dump(CLF_KFOLD_DUMP_NAME, clf)
scores_mean = np.mean(scores)
logger.info("Score: {}".format(scores_mean))
return clf
评论列表
文章目录