def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10):
assert(embeddings1.shape[0] == embeddings2.shape[0])
assert(embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff),1)
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set])
if np.max(far_train)>=far_target:
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
threshold = f(far_target)
else:
threshold = 0.0
val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set])
val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean
评论列表
文章目录